Allograft Rejection After Liver Transplantation: What A Clinician Needs to Know?

By

Mohamed Said

Professor of Hepatogastroenterology

Consultant of Liver Transplantation

Regional Supervisor, NCCVH

Cairo University

2019

- Introduction
- Incidence & risk factors
- Immunological basis &
 - Pathogenesis
- Clinical Features & Diagnosis
- Management

Introduction

- Incidence & risk factors
- Immunological basis &
 - **Pathogenesis**
- Clinical Features & Diagnosis
- Management

- Liver transplantation is the most effective treatment for many patients with acute or chronic liver failure resulting from a variety of causes.
- Successful LT extends life
 expectancy and enhances quality
 of life

		Deceased Donor	Living Donor
	To Date	147,009	6,25
	2017	5,185	23
	2016	7,496	34
	2015	6,768	35
	2014	6,450	28
Number of LTx cases in LISA	2013	6,203	25
	2012	6,010	24
9,000	2011	6,095	24
	2010	6,009	28
	2009	6,101	21
	2008	6,070	24
	2007	6,228	26
	2006	6,363	28
	2005	6,121	32
3,000	2004	5,848	32
	2003	5,351	32
	2002	4,969	36
0 +	2001	4,671	52
2017 2013 2009 2005 2001 1997 1993 1989	2000	4,595	40
2017 2013 2009 2003 2001 1997 1993 1909	1999	4,499	25
	1998	4,427	9
	1997	4,101	8
	1996	4,022	6
	1995	3,880	5
	1994	3,592	6
	1993	3,404	3
	1992	3,031	3
	1991	2,931	2
	1990	2,676	1
	1989	2,200	
	1988	1,713	

Status of liver Transplantation in Europe

TABLE 1. Liver transplant activity in the Arab world until August 2013 arranged according to date of the first liver transplant

Country	First LT	LDLT	DDLT	Total	%
Saudi	1990	648	690	1,338	35%
Egypt	1991	2,138	2	2,140	56%
Tunisia	1998	8	31	39	1%
Lebanon	1998	4	19	23	0.6%
Algeria	2003	36		36	1%
Jordan	2004	174	4	178	5%
Libya	2005	21		21	0.5%
UAE	2007	2		2	0.1%
Kuwait	2010		2	2	0.1%
Iraq	2011	21	0	21	0.5%
Qatar	2011		4	4	0.1%
Total		3,052	752	3,804	

IT, liver transplantation; IDIT, living donor liver transplantation; DDLT, deceased donor liver transplantation; UAE, United Arab Emirates.

Khalaf H. Transplantation. 2014

N. of patients

Cairo University Ain Shams Mansoura Menofia

Current Total number of LTx in Egypt is approximately 3500-4000

30%

Total Ltx In Egypt

Cairo University T eams

Cairo University Teams

Post LTx Survival %

 Despite substantial technological, medical and surgical advances, liver transplantation remains a complex procedure that is accompanied by significant morbidity and mortality.

 The complications occur both immediately post-transplantation and in the long-term. Allograft dysfunction and surgical complications occurring in the immediate postoperative period.

Allograft dysfunction

- · Primary non function
- Primary poor function
- · Acute cellular rejection
- · Recurrent viral hepatitis
- · Drug hepatotoxicity

Surgical complications

- · Postoperative hemorrhage
- Vascular complications Hepatic artery thrombosis Portal vein thrombosis Hepatic venous obstruction
 - Other
- Biliary tract complications Bile leak or fistula Biliary stricture

Long-term complications

- Chronic rejection
- Renal failure
- · Arterial hypertension
- · Diabetes mellitus
- Dyslipidemia
- Obesity
- · Bone complications
- · Neurological complications
- Malignancy

- Introduction
- Incidence & risk factors
- Immunological basis &
 - **Pathogenesis**
- Clinical Features & Diagnosis
- Management

Living donor liver transplantation vs. deceased liver transplantation: complications and mortality (1991–2009) – European Liver Transplant Registry [40].

	Living donor liver transplantation
Total number	3622
Adult LDLT (%)	65%
Donor mortality rate	0.18%
5-year graft survival Children Adult	69% 78% 63%
Causes of graft loss Technical complications Infection Rejection Tumour recurrence General complications Non-tumour disease recurrence	26% 18% 8% 12% 20% 4%

Predictors of Mortality in Living Donor Liver Transplantation

S. Elkholy^{a,}*, S. Mogawer^a, A. Hosny^b, M. El-Shazli^b, U.M. Al-Jarhi^a, S. Abdel-Hamed^c, A. Salah^b, N. El-Garem^a, A. Sholkamy^a, M. El-Amir^a, M.S. Abdel-Aziz^d, A. Mukhtar^e, A. El-Sharawy^f, and A. Nabil^b

^aInternal Medicine Department, Faculty of Medicine, Cairo University, Egypt: General Surgery Department, Faculty of Medicine, Cairo University, Egypt; ^cClinical Pathology Department, Faculty of Medicine, Cairo University, Egypt; ^dTropical Medicine Department, Faculty of Medicine, Cairo University, Egypt; ^dTropical Medicine Department, Faculty of Medicine, Cairo University, Egypt; ^dTropical Medicine Department, Faculty of Medicine, Cairo University, Egypt; ^dTropical Medicine Department, Faculty of Medicine, Cairo University, Egypt; ^eAnesthesia and Intensive Care Department, Faculty of Medicine, Cairo University, Egypt; and Anesthesia and Intensive Care Department, Egypt

Transplantation Proceedings, 49, 1376–1382 (2017)

To conclude, sepsis is the most common cause of early mortality after LDLT. A MELD score >20, intraoperative transfusion of more than 8 units of packed RBCs, and ICU stay more than 9 days are three independent predictors of early mortality. Their incorporation into a combined risk index can be used to improve outcomes of LDLT. After liver transplantation (LTx), nearly every recipient will have an *elevation of injury tests* (*aminotransferases and/or bilirubin and alkaline phosphatase*).

The timing, magnitude, and context of abnormal liver tests are always important considerations in determining the likely cause.
 Andrew, et al 2016

CAUSES OF ELEVATED LIVER BIOCHEMISTRIES AFTER LIVER TRANSPLANTATION

Primary Parenchymal

Immune

Rejection (acute, chronic, antibody mediated)

Recurrence of autoimmune hepatitis, primary biliary cholangiopathy, primary sclerosing cholangitis

Nonimmune

Preservation injury, from mild to primary nonfunction

Primary infection, including procedure related, donor derived, recipient derived, and nosocomial

Recurrent infection, for example, hepatitis B and C

Drug induced, for example, secondary to antibiotics or immunosuppression

Recurrence of primary liver disease, for example, alcohol and nonalcoholic steatohepatitis

Biliary

Anastomotic stricture

Ischemic-type nonanastomotic strictures

Bile leak (intrahepatic or perihepatic)

Choledocholithiasis

Biliary casts, for example, following donation after cardiac death

Other Causes

Hemolysis

Gilbert syndrome

Space-occupying lesions, for example, posttransplant lymphoproliferative disease, recurrence of hepatocellular carcinoma, or cholangiocarcinoma Diabetic hepatopathy

- Introduction
- Immunological basis &
 - Pathogenesis
- Clinical Features & Diagnosis
- Incidence & risk factors
- Management

Immune system include two main arms
1) Cell – mediated immunity.
2) Humoral (antibody–mediated immunity)

Cell-mediated Immunity

Humoral Immunity

- B-lymphocytes TH2 produces (interleukins) IL-4 & IL-5 which in turn causes:
- **B cells proliferation & differentiation into**
 - memory B cells
 - Antibody secreting plasma cells

Humoral Immunity

New Concept of immunological pathways

Didier Samuel, et al, 2017

- Introduction
- Immunological basis &
 - Pathogenesis
- Clinical Features & Diagnosis
- Incidence & risk factors
- Management

CLINICAL FEATURES AND DIAGNOSIS OF ACUTE CELLULAR REJECTION

- Not uncommon in the first 3 months
- Symptoms of mild rejection are nonspecific:
 - Low-grade fever
 - Fatigue
 - Malaise
 - **Generalized** weakness
 - Jaundice

Suspected after elevation of hepatic enzymes (serum aminotransferases, alkaline phosphatase, gamma-glutamyl transpeptidase) and/or bilirubin.
Diagnosis depend on liver biopsy

Differential Diagnosis of Acute and Chronic Rejection.

Category	Etiology	Time after liver transplantation
Surgical issues	Hepatic artery thrombosis Biliary issues	More common in early period Any time
Infections	Cytomegalovirus, atypical viral infections	Higher chances in early months
Rejection	Acute cellular rejection Chronic rejection (CR) Antibody mediated Plasma cell rich rejection	Any time after liver transplantation, majority of ACR occur early (initial 3 months) CR occur late (months to years) Evolving literature on antibody mediated rejection Plasma cell rich rejection occurs after months to years
Recurrence of primary disease	Hepatitis B, hepatitis C, non-alcoholic steatohepatitis, autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, autoimmune hepatitis	Generally >1 year after liver transplantation, viral can manifest any time

Banff schema

Table 2 Rejection Activity Index for Diagnosis of ACR (from Refs. 15,24).

Category	Criteria	Score
Portal inflammation	Mostly lymphocytic inflammation involving, but not noticeably expanding, a minority of the triads	1
	Expansion of most of all of the triads, by a mixed infiltrate containing lymphocytes with occasional blasts, neutrophils and eosinophils. If eosinophils are conspicuous and accompanied by edema and microvascular endothelial cell hypertrophy is prominent, acute antibody mediated rejection should be considered ^a	2
	Marked expansion of most or all of the triads by a mixed infiltrate containing numerous blasts and eosinophils with inflammatory spillover into the periportal parenchyma	3
Bile duct inflammation damage	A minority of the ducts are cuffed and infiltrated by inflammatory cells and show only mild reactive changes such as increased nuclear: cytoplasmic ratio of the epithelial cells	1
	Most or all of the ducts infiltrated by inflammatory cells. More than an occasional ductshows degenerative changes such as nuclear pleomorphism, disordered polarity and cytoplasmic vacuolization of the epithelium	2
	As above for 2, with most or all of the ducts showing degenerative changes or foacal luminal disruption	3
Venous endothelial inflammation	Subendothelial lymphocytic infiltration involving some, but not a majority of the portal and/or hepatic venules	1
	Subendothelial infiltration involving most or all of the portal and/or hepatic venules with or without confluent hepatocyte necrosis/dropout involving a minority of perivenular regions	2
	As above for 2, with moderate or severe perivenular inflammation that extends into the perivenular parenchyma and is associated with perivenular hepatocyte necrosis involving a majority of perivenular regions	3

- 1. *Demetris AJ*, comprehensive update of the Banff Working Group Am J Transpl. 2016
- Banff schema for grading liver allograft rejection: an international consensus document. Hepatology. 1997

A score of 0-2 is no rejection
3 borderline (consistent with)
4-5 is mild
6-7 is moderate
8-9 as severe ACR.

LATE ONSET ACUTE CELLULAR REJECTION (LAR)

- 3–6 months after transplantation
- LAR generally occurs at the time of cessation of initial higher immunosuppression.
- Incidence ranged from 7% to 40%.
- Causes graft loss, decreased patient survival, CR and worse prognosis.
- Low mean trough Tacrolimus levels preceded

 more common in autoimmune etiology before liver transplant.

 The LAR was more common in females and younger recipients.

 Differential diagnosis of LAR is plasma cell rich rejection (de novo autoimmune hepatitis or DAIH) CLINICAL FEATURES AND DIAGNOSIS OF CHRONIC REJECTION

- occurs months to years after liver transplantation
- no time limit is intended in definition
- CR occurs in 3–17%
- The incidence of CR is lower in Tacrolimus compared to Cyclosporin.

OR is characterized by obliterative arteriopathy and ductopenia
Presents with progressive cholestatic graft dysfunction and may results graft loss

Parameter	Early CR (at least 2 findings should be present)	Late CR (at least 2 findings should be present)
Small bile ducts (<60 $\mu\text{m})$	Senescence-related changes involving a majority of ducts; bile duct loss	Degenerative changes in remaining bile ducts, loss in \geq 50% of portal tracts
Terminal hepatic venules and zone 3 hepatocytes	Perivenular mononuclear inflammation Lytic zone 3 necrosis and inflammation Mild perivenular fibrosis	Focal obliteration Variable inflammation Moderate to severe (bridging) fibrosis
Portal tract hepatic arterioles	Occasional loss involving <25% of portal tracts	Loss involving >25% of portal tracts
Large perihilar hepatic artery branches	Intimal inflammation, focal foam cell deposition without lumenal compromise	Lumenal narrowing by subintimal foam cells Fibrointimal proliferation
Large perihilar bile ducts	Inflammation damage and focal foam cell deposition	Mural fibrosis
Other	So-called "transition" hepatitis with spotty necrosis of hepatocytes	Sinusoidal foam cell accumulation; marked cholestasis

Demetris AJ, Am J Transpl. 2016

Terminology Updates

Older (discouraged) terminology	Newer (preferred) terminology
Humoral rejection (Acute) cellular rejection <i>De novo</i> auto-immune benatitis	Antibody-mediated rejection (AMR) T cell–mediated rejection (TCMR) Plasma cell rich–rejection
Plasma cell hepatitis	

Demetris et al, 2016

Plasma cell-rich rejection (de novo autoimmune/plasma cell hepatitis)

- Atypical presentations
- poorly understood and uncommon (3-5% of recipients)
- late (>6 months) dysfunction that resembles native liver autoimmune hepatitis (AIH)

Characteristics of plasma cell-rich rejection

- More prevalent and severe lymphocytic cholangitis.
- IgG4+ plasma cell over-representation >50% vs. 3% -AIH
- More aggressive central perivenulitis
- DSA+/ classical and other autoantibodies
- Portal microvascular C4d deposition
- Co-existent typical TCMR or chronic rejection features in 18–24% of cases

Criteria for the diagnosis of plasma cell-rich rejection^{1,2}

Must fulfill criteria 1 and 3; criterion 2 is desirable, but not absolutely required:

- (1) Portal and/or perivenular plasma cell-rich (estimated >30%) infiltrates with easily recognizable periportal/interface and/or perivenular necro-inflammatory activity usually involving a majority of portal tracts and/or central veins. Most of these cases are graded at least "moderate" with a total RAI score ≥5 because "V score" is usually "3" because of aggressive perivenular activity, whereas "Portal Inflammation" score is usually ≥2.
- (2) Lymphocytic cholangitis is usually present and a desirable feature, but not absolutely required (inflammatory bile duct damage might be a relatively minor component, but Banff component score for bile duct injury is usually ≥1).
- (3) Original disease other than autoimmune hepatitis.

Antibody-Mediated Rejection (AMR)

- (AMR) in liver transplants is a field in its infancy compared with kidney and lung
- First several weeks after transplantation in highly sensitized recipients.
- Graft dysfunction/hyperbilirubinemia, thrombocytopenia low serum complement levels
- Post-transplant DSA persistence.
- Circulating immune complexes.

Criteria for establishing the diagnosis of acute AMR in liver allografts

Definite for acute/active¹ AMR (all four criteria required):

- (1) Histopathological pattern of injury consistent with acute AMR, usually including the following: portal microvascular endothelial cell hypertrophy, portal capillary and inlet venule dilatation, monocytic, eosinophilic, and neutrophilic portal microvasculitis, portal edema, ductular reaction; cholestasis is usually present, but variable; edema and periportal hepatocyte necrosis are more common/prominent in ABO-incompatible allografts (57,117,139); variable active lymphocytic and/or necrotizing arteritis
- (2) Positive serum DSA
- (3) Diffuse (C4d score = 3) microvascular C4d deposition¹ on frozen or formalin-fixed, paraffin-embedded tissue in ABOcompatible tissues or portal stromal C4d deposition in ABOincompatible allografts.
- (4) Reasonable exclusion of other insults² that might cause a similar pattern of injury (see text). Most cases will score (C4d-score: 3+ h-score = 5 or 6; see below).

Demetris et al, 2016

- Introduction
- Immunological basis &
 - **Pathogenesis**
- Clinical Features & Diagnosis
- Incidence & risk factors
- Management

ACR / TCMR

Dogan et al. 2018

Dependent and independent risk factors associated with acute graft rejection

Variable	Univariate (p-value)	Multivariate* (p-value)	OR (95% CI)
Biliary complications	0.005	0.001	4.89 (2.00–11.98)
CMV mismatch R+ status	0.082	0.034	9.88 (1.18-82.36)
Sex mismatch	0.069	0.010	3.16 (1.31-8.10)
Sex mismatch with female donor	0.115	0.034	3.0 (1.10-7.58)
Recipient age	0.032	0.065	1.0 (0.96–1.04)
CMV mismatch D+ status	0.274	_	-
Sex mismatch with male donor	0.560	_	_
Donor age	0.530	_	_
Donor sex	0.900	_	_
Cold ischemia time	0.476	_	-
Warm ischemia time	0.875	_	_
Recipient sex	0.597	_	_
Hepatitis C	0.986	_	_
Hepatitis B	0.818	_	_
Autoimmune hepatitis	0.6955	_	_
Hepatocellular carcinoma	0.286	_	_
Cholestatic liver disorders	0.732	_	_
MELD score	0.922	_	_
Number of LTs	0.04	0.296	1.7 (0.62-4.77)
Pre-transplant diabetes mellitus	0.286	_	_
Post-transplant diabetes mellitus	0.408	_	_
Immunosuppression regimen after LT	0.755	-	_

ACR / TCMR

- Autoimmune etiology of underlying liver disease before liver transplantation (PBC, PSC,AIH)
- Cytomegalovirus infection
- Low levels or noncompliance to immunosuppression
- Positive lymphocyte cross-match
- Lower recipient age
- Donor-recipient ethnic origin
- Male donor into female recipient
- Higher donor age
- Higher cold ischemia time

- In addition to previously mentioned factors;
- Higher number and severity of acute rejection episodes
- 2. Retransplantation for CR
- 3. Male donor into female recipient
- 4. Higher donor age
- 5. Higher cold ischemia time
- Genetically unrelated donors when compared to genetically related donors in LDLT

- Introduction
- Immunological basis &
 - **Pathogenesis**
- Clinical Features & Diagnosis
- Incidence & risk factors
- Management

CONVENTIONAL NON-SPECIFIC IMMUNOSUPPRESSION

Immunosuppression regimens consisting of
 Tacrolimus with MMF or an mTOR inhibitor are
 highly effective in preventing acute rejection after
 LT.

 Higher rejection rate with immunosuppression regimen consisting of cyclosporine and

prednisolone with or without azathioprine

IMMUNOMONITORING STRATEGIES

Aim to:

- Stratify recipients according to their immunological risk pre- and post-transplantation
- Identify rejection/graft damage before it becomes clinically apparent
- 3) Detect over immunosuppression
- 4) Identify tolerant recipients

NOVEL IMMUNOTHERAPEUTIC APPROACHES				
CELL-BASED APPROACHES	TARGETED IMMUNOTHERAPIES	APPROACHES TO REDUCE LIVER ALLOGRAFT IMMUNOGENICITY		
 Adoptive transfer of <i>ex vivo</i> expanded immune regulatory cells Stem cell therapy to achieve hematopoietic chimerism Promotion of endogenous immune regulatory cell function and/or expansion 	 Inhibiting inflammatory cytokines Inhibiting T and B cell signaling (bortezomib, JAK & PKC inhibitors) B and T cell depletion (rituximab, cyclophosphamide) Complement inhibition Co-stimulation blockade (belatacept, anti-CD28, anti-CD40, anti-ICOS) 	 Machine perfusion Targeted immunotherapies Cell-based immunotherapies 		

Treatment of ACR / TCMR

- Most of acute rejection episodes improve with:
- Steroid boluses (500–1000 mg of methylprednisolone is given for 1–3 days followed by taper
- 2. Escalation of immunosuppression.
- Generally it does not have adverse impact on graft or patient survival in long term.

Goddard, Liver Transpl. 2002, Seiler CA, Transpl Int. 1999

Regimen B	Regimen A
Methylprednisolone	Methylprednisolone
1000 mg/day intravenously	1000 mg for first day
for three days followed by	200 mg on second day
baseline dose of 20 mg on	40 mg every day for 5 days
4th day.	20 mg at 7th day
50%	The response 83%
More infections (90%)	Less infections (55%)

Volpin et al , 2002, Narendra, 2017

TREATMENT OF STEROID RESISTANT ACUTE CELLULAR REJECTION

- Majority of ACR episodes improve with steroid therapy or repeat steroid therapy (infrequently needed).
- Steroid resistant ACR may happen in 10% of ACR
- Conversion to:
 - Tacrolimus, Sirolimus, Mycophenolate,
 - Anti thymocyte globulin,
 - Anti-CD3 monoclonal antibody (Muromonab CD3 OKT3)
 - Anti interleukin 2 agents (Basiliximab -Simulect)

TREATMENT OF CHRONIC REJECTION

Principle:

Escalation of immunosuppression

OR

Retransplantation in absence of

response

Strategy

 Escalation of baseline immunosuppressive drugs

2. Providing additional IS drugs

Sirolimus or Everolimus as an additional agent to immunosuppressive regimen, these agents provide additional site of action in the immunity cascade. Addition of mTOR inhibitors has been shown to reverse CR in approximately half of

patients.

Predictors of non-recovery

1. Donor age

- 2. More extensive bile duct loss
- 3. Small arterial loss
- Higher total bilirubin and aspartate aminotransferase values.

Transplantation tolerance

Tolerance is defined as stable graft function in a recipient who is off immunosuppressive drugs and in whom no clinically significant detrimental immune responses or immune deficits are detected.

Possible selection criteria for IS DC

- Time greater than 6 years since Tx.
- Absence of recent evidence of rejection.
- No history of autoimmunity.
- Liver biopsy without significant inflammatory damage
- Approximately 40% likelihood of being able to successfully discontinue immunosuppression.

Biomarkers of tolerance are currently being tested within prospective clinical trials.
In addition, the use of immunomodulatory cell therapy is a promising strategy to intentionally induce tolerance shortly after transplantation.

Mastoridis S, Curr Opin Organ Transplant 2016

- ACR and CR present as graft dysfunction and a liver biopsy is needed for definitive diagnosis.
- Early ACR does not affect graft survival, late ACR is associated with inferior graft survival as compared to early ACR and may evolve into CR.
- CMV infection, Low levels or noncompliance to immunosuppression and others are risk factors for rejection.
- Most of ACR/TCMR respond to steroid bolus.

 CR responds to increased immunosuppression in approximately half of cases.

 Non-responding CR is associated with high mortality in absence of retransplantation.
- Routine DSA monitoring may help IS management, but work is needed to better define the following:
- 1. DSA-associated tissue injury patterns.
- Relative contribution of AMR to "mixed" TCMR and AMR episodes.
- 3. appropriate IS management

Immunotherapy for organ
transplantation with Tolergenic
mediators is the future for better
Tolerance.

